
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Description of a superconducting transmission line
having a weak link Josephson junction architecture
Norman E. Anderson
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Anderson, Norman E., "Description of a superconducting transmission line having a weak link Josephson junction architecture"
(2007). Retrospective Theses and Dissertations. 15103.
https://lib.dr.iastate.edu/rtd/15103

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F15103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15103?utm_source=lib.dr.iastate.edu%2Frtd%2F15103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Description of a superconducting transmission line having a weak link Josephson junction 
architecture 

 

by 

 

Norman E. Anderson 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

Major:  Electrical Engineering 

 
Program of Study Committee: 

Mani Mina, Co-Major Professor 
Robert Weber, Co-Major Professor 

Alex Travesset 

 

Iowa State University 

Ames, Iowa 

2007 

Copyright © Norman E. Anderson, 2007.  All rights reserved.



www.manaraa.com

UMI Number: 1446139

1446139
2007

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

 by ProQuest Information and Learning Company. 



www.manaraa.com

ii 

 

TABLE OF CONTENTS 

TABLE OF CONTENTS ............................................................................................. ii 

LIST OF FIGURES ..................................................................................................... iv 

ABSTRACT ..................................................................................................................v 

CHAPTER 1.  MOTIVATION AND OVERVIEW......................................................1 
1.1  Motivation.......................................................................................................... 2 

1.1.1  Magnetic Vector Potential .......................................................................... 2 
1.1.2  Sine-Gordon Equation ................................................................................ 3 
1.1.3  Solution Using the Josephson Current ........................................................ 4 

1.2  Electromagnetic Description.............................................................................. 5 

CHAPTER 2.  A BRIEF HISTORY AND REVIEW ...................................................7 
2.1  Beginnings of the Josephson Junction ............................................................... 8 

2.1.1  Josephson’s Research.................................................................................. 8 
2.1.2  The DC Josephson Effect............................................................................ 9 
2.1.3  The AC Josephson Effect.......................................................................... 11 

2.2  Review of Conventional Solution Methods..................................................... 14 
2.2.1  Traditional Approach ................................................................................ 14 
2.2.2 Current Density Method ......................................................................... 20 

CHAPTER 3.  MAGNETIC VECTOR POTENTIAL METHOD..............................25 
3.1  Introduction...................................................................................................... 25 

3.1.1  Calculation of the Magnetic Vector Potential........................................... 26 
3.1.2  Summary of Solution ................................................................................ 44 

3.2  The Josephson Current..................................................................................... 44 
3.2.1 Sine-Gordon Equation ............................................................................ 45 
3.2.2 Solution Using the Josephson Current.................................................... 48 

CHAPTER 4.  SUMMARY AND DISCUSSION ......................................................54 
4.1  Summary of Work ........................................................................................... 54 
4.2  Discussion of Results....................................................................................... 55 

CHAPTER 5.  FUTURE DIRECTIONS.....................................................................60 

CHAPTER 5.  FUTURE DIRECTIONS.....................................................................60 
5.1  Josephson Current............................................................................................ 60 
5.2  Higher Complexity Geometries ....................................................................... 61 
5.3  Additional Parameters...................................................................................... 63 

APPENDIX A.  MATLAB GRAPHING SCRIPTS ...................................................65 

APPENDIX B.  MATHEMATICA COMPUTATIONS.............................................68 

APPENDIX C.  MATLAB: FINITE DIFFERENCE METHOD................................72 



www.manaraa.com

iii 

 

BIBLIOGRAPHY........................................................................................................75 

ACKNOWLEDGEMENTS.........................................................................................78 

 



www.manaraa.com

iv 

 

LIST OF FIGURES 
Figure 1.  Traditional approach to solve for Josephson junction field equations. 15 
Figure 2.  Superconducting layered structure. 15 
Figure 3.  Dispersion relation in the insulating region with ω = 100 G-rad/s. 28 
Figure 4.  Dispersion relation for the insulating region with varying values of kx and ω. 29 
Figure 5.  Magnetic field in the insulating region at t = 1s. 31 
Figure 6.  Magnetic field in the insulating region at t = 2s. 32 
Figure 7.  Magnetic field in the insulating region at t = 3s. 32 
Figure 8.  Magnetic field in the insulating region at t = 4s. 33 
Figure 9.  Electric field in the insulating region at t = 1s. 33 
Figure 10.  Electric field in the insulating region at t = 2s. 34 
Figure 11.  Electric field in the insulating region at t = 3s. 34 
Figure 12.  Electric field in the insulating region at t = 4s. 35 
Figure 13.  Magnetic field in the superconducting region at t = 1s. 39 
Figure 14.  Magnetic field in the superconducting region at t = 2s. 40 
Figure 15.  Magnetic field in the superconducting region at t = 3s. 40 
Figure 16.  Magnetic field in the superconducting region at t = 4s. 41 
Figure 17.  Electric field in the superconducting region at t = 1s. 42 
Figure 18.  Electric field in the superconducting region at t = 2s. 42 
Figure 19.  Electric field in the superconducting region at t = 3s. 43 
Figure 20.  Electric field in the superconducting region at t = 4s. 43 
Figure 21.  Plot of the solution to the non-stationary (A) and stationary (B) Sine-Gordon 

equations for 0 < t < 0.01s. 46 
Figure 22.  Plot of the solution to the non-stationary (A) and stationary (B) Sine-Gordon 

equations for 0 < t < 0.0001s. 47 
Figure 23.  Space-time geometry of the Josephson junction under consideration. 52 
Figure 24.  Coaxial configuration:  Two superconducting regions separated by an insulating 

region. 62 

 



www.manaraa.com

v

ABSTRACT 

 

A Josephson junction consists of two superconductors separated by a non-

superconducting layer, typically an insulator that is thinner than the Josephson penetration 

depth.  We will explore this structure using the magnetic vector potential to describe the 

electromagnetic fields of a superconducting transmission line having the characteristics of a 

weak link Josephson junction.  However, we will first revisit the beginnings of the Josephson 

junction and the conventional formulation techniques used to describe the electromagnetism 

of layered superconducting structures and Josephson junctions.  We will then formally derive 

the field equations, for a transverse magnetic to z (TMz) mode, for a superconducting 

transmission line, and take an in depth look at what these electromagnetic field equations 

represent.  We will then discuss the Sine-Gordon equation and its role in the description and 

solution of Josephson junctions.  This equation governs the coupling between 

superconductors separated by an insulating barrier, and it is this coupling that Josephson 

predicted.  We continue on this path by revisiting the same superconducting transmission 

line, but take into account tunneling through the barrier using the Josephson current in our 

solution method.  Finally, we will investigate using the finite difference method in order to 

numerically solve for the electromagnetic fields in our superconducting transmission line. 
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CHAPTER 1.  MOTIVATION AND OVERVIEW 

Devices using a Josephson junction architecture attract much attention because of 

their high sensitivity and novel attributes.  A few of the realized and theorized applications 

include antennas [Suzuki et al. (1994)], transmission lines [Pond et al. (1989)], quantum 

computing [Faoro et al. (2003)], and possibly most notably its use in the SQUID 

(Superconducting QUantum Interference Device) magnetometer [Clarke et al. (1975)].  It is 

this driving force that has led to volumes of work on Josephson junctions and similar devices 

in hopes of discovering a new application or improving on current applications.  It is this 

motivation that has led to us revisiting the problem of describing the electromagnetic field 

equations of a superconducting transmission line. 

Initially, it was our focus to solve for the electromagnetic fields of a Josephson 

junction straightaway.  However, after much research into the details of Josephson junctions, 

developing a solution method for the general layered superconducting transmission line was 

a more logical first step.  Utilizing different techniques to describe this system may lead to 

different closed form solutions, which is still an ongoing activity [Wu et al. (2002)].  The 

general community uses the traditional approach that we will outline in Chapter 2, so the 

question of choosing a gauge is not necessary.  In contrast, we see this gauge as a freedom to 

possibly make solutions in more complex geometries simpler.  In addition, a fresh viewpoint 

can sometimes lead to a new discovery or perhaps a new description of a phenomenon. 
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1.1  Motivation 

Here the magnetic vector potential, A is used in order to solve for the propagating 

electromagnetic fields of a superconducting transmission line.  The magnetic vector potential 

is a useful mathematical tool because both the electric and magnetic fields are gauge 

invariant; allowing a scalar transformation of A without affecting the electromagnetic fields.  

For complex problems, applying this transformation to A can simplify the mathematics 

necessary to find the electromagnetic equations.  This is increasingly useful as the geometry 

of the Josephson junction structures become more and more complex.  With the utilization of 

A, a gauge can be selected to obtain a mathematically simple form of A for the case being 

dealt with.  As an example of this concept, A will be utilized to solve a relatively simple 

superconducting transmission line problem having planar geometry.  In addition, the Sine-

Gordon equation will be investigated to obtain a representation of the coupling, and a general 

indication of where the linear approximation begins to break down.   Finally, the AC 

Josephson effect will be considered in our solution method.  Using the Josephson current, a 

solution technique using the finite difference method will be investigated.  

1.1.1  Magnetic Vector Potential 

We will use the magnetic vector potential to solve for the propagating 

electromagnetic field equations for a superconducting transmission line.  The 

superconducting transmission line structure considered is that of two superconductors 

separated by an insulating region.  In this case, the separation between superconductors is 

great enough that Josephson tunneling phenomena can be ignored.  We assume a TMz mode 
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of propagation and solve directly for the magnetic vector potential using the Helmholtz 

equation in the Coulomb gauge.   

Since the magnetic and electric fields are gauge invariant we can select a gauge which 

is mathematically simple in order to solve for the magnetic vector potential.  This gauge 

invariance is one of the benefits of this solution method when dealing with more complicated 

structures.  In our example the structure is simple to show how the method is used.  Using the 

calculated value of the magnetic vector potential, the electric and magnetic fields can be 

calculated quite simply using two separate formulas given at the end of this chapter.  The 

utilization of the magnetic vector potential to solve for the electromagnetic fields in this 

structure is in tune with Josephson’s original concepts for layered superconducting structures 

[Josephson (1964)], and yields similar results calculated in recent literature using other 

analytical techniques [Wu et al. (2002)].   

1.1.2  Sine-Gordon Equation 

The Sine-Gordon equation characterizes the phase across the barrier of a Josephson 

junction.  In essence it contains information about the coupling between the superconductors.  

We will look at the non-stationary and stationary versions of this equation.  The stationary 

version has long been used in problem solutions yielding acceptable results.  However, we 

will solve both the stationary and non-stationary forms of this equation in order to determine 

where this approximation is accurate.  Also, this exercise will show how modern 

mathematical software can solve complex problems, previously needing approximations, in a 

simple and compact graphical form.   
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In our solution to the Sine-Gordon equation we will use realistic numbers for the 

Josephson frequency and length.  This will give us a more accurate representation of the time 

dependence of this solution, and therefore the time dependence of the coupling between 

superconductors.  While it seems we are neglecting the length of the barrier between 

conductors in our analysis, we will discuss how this thickness is inherently coupled to the 

time dependence of the tunneling effect.   

1.1.3  Solution Using the Josephson Current 

The Sine-Gordon equation bridges the gap between two superconductors separated by 

an insulating region and two superconductors that are coupled through the insulating region.  

While our description is relying purely on classical electrodynamics with results obtained 

using quantum mechanics, the full description of a Josephson junction and related 

phenomena are governed by quantum mechanics.  Under the initial conditions of our 

structure we will use the current density for the AC Josephson effect in order to solve for the 

field equations of a superconducting transmission line having a weak-link Josephson junction 

architecture.  This formulation leads to a transcendental equation which is not readily solved 

using analytical techniques.  In this case we will attempt a numerical solution to this 

problem, which will also allow for more complex geometries to be solved provided initial 

conditions are known.  Still, the basic principles of using the Helmholtz equation with the 

magnetic vector potential will be invoked. 
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1.2  Electromagnetic Description 

Throughout the introduction it was heavily expressed that the magnetic vector 

potential, A will be used in our solution techniques along with the Helmholtz equation to 

give us a classical description of a superconducting transmission line.  The magnetic vector 

potential is defined by 

 .=∇×B A (1) 

Where B is the magnetic flux density.  This relation was born from the realization that if 

∇ =B 0� everywhere, then B must be the curl of some vector field [Jackson (1999)].  

Remembering that the curl of the gradient of a scalar variable is zero, A can be transformed 

by such a quantity without affecting B as shown in equation (2). 

 ( )'

′→ = +∇Λ

=∇× =∇× +∇Λ =∇×

A A A

B A A A

v

v (2) 

 This transformation of A is known as a gauge transformation, and the fact that B is 

unchanged under such a transformation of A makes B a gauge invariant field.  This gauge 

invariance of B, makes A an extremely useful mathematical tool.  The way in which we can 

use A is through the Helmholtz equation 

 
2

2
2 2

1 .
c t

µ∂
∇ − =

∂
AA J (3) 

This wave equation relates A to the current density, J of the structure under consideration.  

By knowing or constructing J, we can then determine A and the resulting electromagnetic 

fields.  We have already seen how B can be determined from A using equation (1), but how 

is the electric field, E determined from A? Remembering way back now to the equations we 

dreamed about in our sleep, we see that Maxwell has given us what we need 
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.∂
∇× =−

∂
BE
t

(4) 

While this is a simple and beautiful relation, we can even simplify one step further using 

equation (1) to find 

 .
t

∂
= −

∂
AE (5) 

We now have our equations for the electromagnetic fields based on the magnetic vector 

potential. 

Up to this point we have neglected a very important quantity, the electric scalar 

potential, Φ and we will continue to do so throughout our solution method by neglecting any 

free static charge.  However, as we will discuss near the end, this quantity may be a 

necessary component to consider in a layered structure with external bias, and could be the 

subject of future work.  In addition we note that our description is utilizing classical 

electrodynamics and not a fully quantum mechanical description.  While certain quantities, 

such as the Josephson current, have been derived quantum mechanically, our solution will 

not have the same quantization. 

Armed now with equations (1), (3), and (5) we have the foundation necessary to 

begin our solution method for a superconducting transmission line without coupling.  Before 

we dive into our solution method, we first briefly recapitulate Josephson’s initial work and 

review two of the conventional methods for calculating the electromagnetic properties of a 

layered superconducting structure.  We will then show how our method of using A can be 

used in a similar manner for probing the electromagnetic properties of layered 

superconducting structures, and may even have some benefits over the traditional 

approaches. 
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CHAPTER 2.  A BRIEF HISTORY AND REVIEW 

Even before the advent of Josephson’s initial paper “Possible new effects in 

superconductive tunneling” [Josephson (1962)], much interest and excitement existed over 

the structure that would later be known by Josephson’s name.  Scientists such as P.W. 

Anderson, A. B. Pippard (Josephson’s advisor), and J. C. Swihart among others were intently 

trying to unravel the mysteries of coupling and electromagnetic propagation in 

superconducting devices of different architectures in hopes of discovering a novel 

application, some new and exotic physics, or a physical realization of a past theory.   

While none of this flurry of work would be possible without the discovery of 

superconductivity by Heike Kamerlingh Onnes in 1911 when he observed the disappearance 

of resistance in mercury at liquid Helium temperatures, the interpretation of 

superconductivity as a quantum phenomena by Fritz London in 1935, the modification of 

London’s theory by Ginzburg and Landau in 1950 giving us an equation by their names, or 

the microscopic (BCS) theory of superconductivity developed by Bardeen, Cooper, and 

Schrieffer in 1957; we will not discuss these events here.  The interested reader is pointed in 

the direction of books such as “Superconductivity”  [Ginzburg and Andryushin (2004)], 

whose first chapter on the discovery of superconductivity is found free on the publisher’s 

website.  We continue our discussion on the history of layered superconducting structures by 

briefly looking at the work preceding Josephson, the influences on Josephson’s work, and 

finally on two prominent results of Josephson’s efforts.  
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2.1  Beginnings of the Josephson Junction 

Long before Josephson was his student, Alfred Brian Pippard was considering the 

various differences between superconductors and normal metals.  Most notably would be his 

series of three papers in 1947 in which he discussed surface and penetration effects in 

superconductors [Pippard (1947)].  It was in this series of papers that Pippard discussed that a 

wave in a superconducting transmission line would be slowed down because of the 

penetration of the magnetic field into the superconductor.  It was this one point in Pippard’s 

series of papers that struck D. R. Young in 1960, and led him to believe that this 

phenomenon may be used to measure the penetration depth of a superconductor.  In turn, one 

of Young’s collaborators was intrigued by this idea and attempted an electromagnetic field 

solution for a layered superconducting transmission line [Swihart (1960)], similar to the one 

we will encounter later.  It was this work by Swihart as well as that by Wu et al. that 

motivated us to develop a solution method before considering the problem in full. 

In his paper, Swihart considers two superconductors separated by a lossy dielectric 

and uses Maxwell’s equations to calculate attenuation, wave velocity, and the electric and 

magnetic fields propagating through the structure.  While Swihart’s inspiration, initially 

beginning with Pippard, led him to look at electromagnetic propagation in layered 

superconducting structures, Pippard’s own student, Josephson, found inspiration to look at 

layered superconducting structures from a different source.  

2.1.1  Josephson’s Research 

As Josephson describes in his paper “Discovery of Tunneling Supercurrents” 

[Josephson (1974)], it was in a lecture given by visiting professor P.W. Anderson on how the 
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ground state of a superconductor breaks the symmetry of the pseudospin Hamiltonian that 

Josephson first started to conjure up his ideas that led to his discovery of tunneling through 

barriers.  This lecture on symmetry breaking fascinated Josephson and led him to wonder 

whether it could be observed experimentally.  It was this question and the support and 

suggestions of Anderson and Pippard that led to Josephson’s calculation of the tunneling 

supercurrents between a pair of superconductors separated by an insulating region.  While the 

explanation of the tunneling effect in Josephson’s first paper [Josephson (1962)] was not 

correct, the work inspired because of this paper, by Josephson and others, soon described this 

curious event.  Today, in most solid state physics books, a chapter can be found on Josephson 

tunneling describing both the DC and AC Josephson effects. 

2.1.2  The DC Josephson Effect 

The DC Josephson effect is the phenomenon of a dc current flowing across the 

insulating region separating two superconductors in the absence of an applied electric or 

magnetic field [Kittel (1996)].  If we let 1ϕ be the wave function for one superconductor and 

2ϕ be the wave function for the other superconductor, then using the time-dependent 

Schrödinger equation we find 

 1 2
2 1and .i T i T

t t
ϕ ϕϕ ϕ∂ ∂

= =
∂ ∂

 (6) 

In this equation T has the units of frequency and is a measure of the “leakage” across the 

boundary from each wave function.  In the case of a very thick insulator the value of T would 

be zero and there would be no tunneling across the barrier.  If we assume superconductors 
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with wave functions of the form ~ ine θϕ , we can substitute this function into equation (6) 

to find 

 

1
1

2
2

1 1 1
1 2

1

2 2 2
2 1

2

2

.
2

i
i

i
i

nei i i n e T
t t tn

nei i i n e T
t t tn

θ
θ

θ
θ

ϕ θ ϕ

ϕ θ ϕ

 ∂ ∂ ∂
= + =  ∂ ∂ ∂ 
 ∂ ∂ ∂

= + =  ∂ ∂ ∂ 

 (7) 

Multiplying the top equation of (7) by 1
1

in e θ− and the bottom equation of (7) by 2
2

in e θ−

( ) ( )( )

( ) ( )( )

1 1
1 2 1 2 1 2 1

2 2
2 1 2 2 1 2 1

1 cos sin
2
1 cos sin .
2

ni in T n n i
t t

ni in T n n i
t t

θ θ θ θ θ

θ θ θ θ θ

∂ ∂ + = − + − ∂ ∂ 
∂ ∂ + = − − − ∂ ∂ 

 (8) 

Equating real and imaginary components for the top and bottom equations of (8) we find 

 
( ) ( )

( ) ( )

1 1 2
2 1 2 1 2 1

1

2 2 1
1 2 2 1 2 1

2

2 sin and cos

2 sin and cos .

n nT n n T
t t n

n nT n n T
t t n

θθ θ θ θ

θθ θ θ θ

∂ ∂
= − =− −

∂ ∂

∂ ∂
= − − =− −

∂ ∂

 (9) 

If now we assume identical superconductors i.e., 1 2n n≅ , we find the following relation for 

the phase difference 

 ( )2 1
2 1 0.

t t t
θ θ θ θ∂ ∂ ∂

= ⇒ − =
∂ ∂ ∂

 (10) 

From this result, we see there is no time rate of change for the phase across the boundary 

under zero applied bias, as we would expect.  After seeing this result we might expect a time 

dependent phase difference if we were to apply a DC bias across the junction, but we will 

have to wait until the next section to find out.  It is defined that the current flow from 
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superconductor 1 to superconductor 2 is proportional to 2n t∂ ∂ [Kittel (1996)] yielding a 

current across the junction having the form 

 ( )0 2 1sin .J J θ θ= − (11) 

It is apparent from this equation that J0 is dependent on the “leakage” T, and a maximum and 

minimum current occur when the superconductor wave functions are 90o and 0o out of phase.   

 

2.1.3  The AC Josephson Effect 

The AC Josephson effect occurs when the Josephson junction has an applied DC bias 

V. Under this condition, a radio frequency current oscillates across the barrier.  This effect 

has led to the successful development of the SQUID magnetometer, and will be the topic of 

further discussion in later sections.  In order to calculate the current produced by this 

phenomenon, we begin by considering an electron pair that experiences a potential difference 

of qV when passing through the insulating region of the junction.  Since the charge on a pair 

of electrons is -2e, the potential difference is then -2eV, and we can conclude that the 

potential energy at one superconductor is eV and at the other the potential energy is –eV.

Similarly to the method used to determine the current density for the DC Josephson 

effect, we begin by using the time-dependent Schrödinger equation which now takes the form 

 1 2
2 1 1 2and .i T eV i T eV

t t
ϕ ϕϕ ϕ ϕ ϕ∂ ∂

= − = +
∂ ∂

h h h h  (12) 

Using the same form of the wave functions that we used previously we find the following 

equation in a similar manner 
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( ) ( )( )

( ) ( )( )

1 1
1 2 1 2 1 2 1 1

2 2
2 1 2 2 1 2 1 2

1 cos sin
2
1 cos sin .
2

ni in T n n i eVn
t t

ni in T n n i eVn
t t

θ θ θ θ θ

θ θ θ θ θ

∂ ∂ + = − + − − ∂ ∂ 
∂ ∂ + = − − − + ∂ ∂ 

 (13) 

Breaking the equation into real and imaginary parts again we find 

 
( ) ( )

( ) ( )

1 1 2
2 1 2 1 2 1

1

2 2 1
1 2 2 1 2 1

2

2 sin and cos

2 sin and cos .

n neVT n n T
t t n

n neVT n n T
t t n

θθ θ θ θ

θθ θ θ θ

∂ ∂
= − = − −

∂ ∂

∂ ∂
= − − =− − −

∂ ∂

h

h

(14) 

We see that the relations for time rate of change of n1 and n2 are the same as what we 

have seen before in the calculation of the current density for the DC Josephson effect, 

however it is obvious that the derivative with respect to time of the phase difference across 

the junction will be different.  Combining and simplifying the above equations, and again 

assuming identical superconductors we find the following result  

 ( )2 1
2 .eV

t
θ θ∂ −
− =

∂ h
(15) 

Now for the case of the Josephson junction under an applied DC bias, we see that there is 

indeed a time varying component of the phase.  Integrating equation (15) with respect to time 

we find 

 2 1
2( ) ( ) ( ) (0) .eVtt t tθ θ δ δ− = = −
h

(16) 

Substituting this result into the current density equation in the same fashion as before we find  

 0
2sin (0) .eVtJ J δ = − 

 h
(17) 

This is the AC Josephson effect, where J0 is dependent on the “leakage” T. We will revisit 

this result later in our investigation of the electromagnetic description of a weak-link 
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Josephson junction transmission line.  From equation (17) it is apparent that the current for 

this system oscillates with a frequency given by 

 22 .eVω πυ= =
h

(18) 

 Using this equation for the frequency we note that the ratio of the frequency υ and the 

voltage is given by 

 MHz483.6 .
VV

υ
µ

= (19) 

This tells us that as an electron pair crosses the Josephson junction barrier, a photon is either 

emitted or absorbed having an energy, 2E eVω= =h . This result clearly shows the 

quantized nature of the energy states of the Josephson junction.  Parker and others [Parker et 

al. (1967)] determined, and it is also clearly seen by the energy relation, that by measuring 

the voltage and frequency across the junction the value of e h could be determined with great 

precision.  Experimental evidence of this arises in a variety of situations.  An example being 

the interaction between the AC Josephson current and the microwave signal that occurs 

under irradiation of a Josephson junction with microwaves.  In this case, steps are seen in the 

V-I characteristic at voltages given by 

 .
2n
nhV

e
υ= (20) 

Here n is an integer and υ is the frequency of the applied radiation.  This phenomenon was 

first seen by Shapiro [Shapiro (1963)]. 

 These are two extremely powerful and intriguing results discovered by Josephson, 

and research still continues to this day because of Josephson’s curiosity during a lecture by 

P.W. Anderson. 
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2.2  Review of Conventional Solution Methods 

In this section we review two of the basic solution methods used to determine the 

electromagnetic properties of a layered superconducting structure, and outline the solution 

methodology.   The two basic methods under consideration are the use of Maxwell’s 

equations and the current density method.  Both have been utilized in the study of Josephson 

junction research as well as other superconducting phenomena [Barone and Paternò (1982)]. 

We begin by looking at the fundamental approach of using Maxwell’s equations to 

solve for the propagating fields in a Josephson junction, which we noted earlier was 

employed by Swihart in his investigation of propagation.  Using this approach we will 

calculate the general form of the electromagnetic fields in terms of the phase difference 

across the boundary, and determine the dispersion relation of the system. 

The next approach we will turn our attention to is the current density method.  This 

method utilizes the two fluid model proposed by Gorter and Casimir [Gorter and Casimir 

(1934)], and uses Maxwell’s equations as well to solve for the electromagnetic fields.  Again, 

we will use this method to solve for the dispersion relation.   

 

2.2.1  Traditional Approach 

One of the earliest and simplest formulations of the propagating fields in a Josephson 

junction was completed using Maxwell’s equations, and more precisely Ampere’s and 

Faraday’s laws, as depicted in Figure 1.  This method was suggested by Josephson and 

calculated by many others since then with slight variations.   
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Figure 1.  Traditional approach to solve for Josephson junction field equations. 

 

For simplicity we assume that our Josephson junction consists of two identical 

superconductors and an insulator of thickness D. It is also assumed that the superconductors 

are much thicker than the penetration depth, λ. Figure 1 illustrates the junction of interest. 

 

Figure 2.  Superconducting layered structure. 

 

In the above figure, the broken line will be chosen as a path of integration that 

extends deep enough into the superconductor so the fields are zero along the segments of dz 
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length parallel to the surface of the junction.  The magnetic field is assumed to be nonzero in 

the y-direction and zero in the x and z-directions, and to penetrate into the superconductors a 

negligible distance.  The electric field normal to the superconductors and the electric field 

normal to the superconductors is also assumed to penetrate a negligible distance.  We then 

begin by using Faraday’s law given by: 

 .BE
t

∂
∂

∇× =−
v

v v
 (21) 

Now, we can integrate this equation over the surface abcd. 

 
s s

BE ds ds
t

∂
∂

∇× ⋅ = − ⋅∫ ∫
v

v v v v (22) 

The left hand side can then be rewritten using Stoke’s law and the definition of a derivative 

with respect to z.

{ }( ) ( ) x
x x

s a b c d a

EE ds E dl E z dz E z D D dz
z

∂
∂→ → → →

∇× ⋅ = ⋅ = + − =∫ ∫
vv v vv

� (23) 

Here, Ex is the electric field polarized in the x-direction inside the insulator.  The right hand 

side is then evaluated giving us: 

 (2 ) .y

s

BB ds D dz
t t

∂∂ λ
∂ ∂

− ⋅ =− ⋅ +∫
v

v (24) 

Again, By is the magnetic induction polarized in the y-direction inside the insulator.  Equating 

(23) and (24) now gives rise to 

 21 .yx BE
z t D

∂∂ λ
∂ ∂

 = − + 
 

(25) 

Operating on (25) with d/dz yields the following relation 
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22

2

21 .yx BE
z z t D

∂∂ λ
∂ ∂ ∂

 =− + 
 

(26) 

If we now consider a similar surface but this time position it normal to the z-axis, it is 

easily shown that this results in 

 
22

2

21 .yx BE
y y t D

∂∂ λ
∂ ∂ ∂

 = + 
 

(27) 

This is similar to that seen for our original surface.  Now using Maxwell’s equation for 

Ampere’s law we can derive another relation governing our Josephson junction. 

 EH J
t

∂ε
∂

∇× = +
v

v v v
 (28) 

Expanding this expression using the constitutive relation for H and B, and keeping only the x-

components we have 

 ( )1 1 .y xz
xx

B EBB J
y z t

∂ ∂∂ ε
µ µ ∂ ∂ ∂

 
∇× = − = + 

 

v v
 (29) 

Now, taking the time derivative of this expression we obtain 

 
2 22

2

1 .y x xz B J EB
t y t z t t

∂ ∂ ∂∂ ε
µ ∂ ∂ ∂ ∂ ∂ ∂
 

− = +  
 

 (30) 

If we add (26) and (27) and multiply by 1/µ we find that 

 
12 2 22

2 2

1 1 21 .y x xz B E EB
t y t z D y z

∂ ∂ ∂∂ λ
µ ∂ ∂ ∂ ∂ µ ∂ ∂

−    − = + +          
 (31) 

The left hand side of (31) is then the same as the left hand side of (30).  Now equating the 

right hand side of (30) with the right hand side of (31) and simplifying we have the following 

relation 
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2 2 2

2 2 2

2 21 1 .x x x xE E E J
y z D t D t

∂ ∂ ∂ ∂λ λµε µ
∂ ∂ ∂ ∂

   + − + = +   
   

 (32) 

We can then rewrite this expression by factoring out Ex to get 

 
2 2 2

2 2 2

2 21 1 .x
x

JE
y z D t D t

∂∂ ∂ λ ∂ λµε µ
∂ ∂ ∂ ∂
    + − + = +    

    
 (33) 

We now define the phase velocity, v to be 

 
1/ 2

21 .v
D
λµε

−
  = +  

  
 (34) 

Rearranging this equation we find that 

 221 .v
D
λµ ε + = 

 
 (35) 

Substituting this result into equation (33) we now have 

 
2 2 2

2 2 2 2 2

1 1 .x
x

JE
y z v t v tε

  ∂∂ ∂ ∂
+ − = ∂ ∂ ∂ ∂ 

 (36) 

It is seen that for the steady state where 0=∂∂ tJ x , equation (36) well describes a 

transverse electromagnetic (TEM) wave propagating between parallel plates with properties 

differing from a normal metal system.  It is also observed that the phase velocity, v, is 

lowered by a factor equal to ( ) 2/121 −+ Dλ . To write equation (36) in terms of the phase 

change, ϕ across the junction we use 

 2 2 ,x
eV e DE

t
ϕ∂

= =−
∂ h h

 (37) 

which we have derived in the previous section.  Solving for Ex we find 

 .
2xE

eD t
ϕ∂

=−
∂

h (38) 
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Substituting our equation for Ex into (36) we have 

 
2 2 2

2 2 2 2 2

1 2 1 .xJeD
y z v t t h v t

ϕ
ε

  ∂∂ ∂ ∂ ∂
+ − =− ∂ ∂ ∂ ∂ ∂ 

 (39) 

Since ϕsincx JJ −= , where Jc is the superconducting critical current and ϕ is a 

function of y and z, we introduce a new quantity λJ such that 

 
( )

1/ 2

.
2 2J

c

h
e D J

λ
µ λ

  = +  
(40) 

This quantity is then commonly referred to as the Josephson penetration depth.  Now 

equation (39) can be written using λJ as 

 
2 2 2

2 2 2 2 2

1 1 sin .
Jy z v t t t

ϕ ϕ
λ

 ∂ ∂ ∂ ∂
+ − = ∂ ∂ ∂ ∂ ∂ 

 (41) 

Taking the time reference where ϕ = 0 and integrating equation (41) with respect to  

time at an arbitrary point (y,z) we have 

 
2 2 2

2 2 2 2 2

1 sin .
Jy z v t
ϕϕ

λ
 ∂ ∂ ∂

+ − = ∂ ∂ ∂ 
 (42) 

This equation is then the equation Josephson obtained to describe the non-equilibrium 

properties of barriers.  It is more commonly referred to as the non-linear Sine-Gordon 

equation.  If the phase variations with time are small enough to be able to linearize (42) we 

can then write 

 0 1( , , ) ( , ) ( , , ) ,y z t y z y z tϕ ϕ ϕ= +  (43) 

where ϕ(y,z,t) is assumed to be small enough such that sinϕ can be approximated by ϕ.

Substituting (43) into (42) and subtracting out the time-averaged quantities gives rise to 
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2 2 2
0

1 12 2 2 2 2

cos1 .
Jy z v t
ϕ

ϕ ϕ
λ

  ∂ ∂ ∂
+ − =  ∂ ∂ ∂   

(44) 

Since ϕ(y, z, t) is assumed to be small, ϕ0 = 0 and sinϕ can be approximated by ϕ.

With this assumption the solution of (44) is then given by 

 ( ) .j k r te ωϕ ⋅ −=
v v

(45) 

Where in our present case rv is in the plane of the junction.  If ϕ is a solution of  

equation (44), then the we can derive the dispersion relation for the insulating barrier. 

 

2 2

2 2 2 2

2 2
2 2

1

1
J

J

r v t

k
v

ϕ ϕ ϕ
λ
ϕϕ ω ϕ
λ

∂ ∂
− =

∂ ∂

− + =
 (46) 

Which simplifies to 

 2 2 2 2 .Jk vω ω= +  (47) 

Here ωJ is given by 

 
2

2 .J
J

vω
λ
 

= 
 

(48) 

It is obvious from this result that no propagating waves exist below ωJ.

2.2.2 Current Density Method 

We begin this method using the same geometry seen in Figure 1 and for the TMz

mode.  We also assume that due to the structure there is no current flow in the y-direction so 

Jy = 0.  From these conditions we know Hx = Hz = Ey = 0 and Hy, Ex, and Ez are nonzero field 

components.  According to the two-fluid model, the current density consists of two parts as 

shown in (49). 
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n s= +J J J (49) 

Here, Jn is the normal part of the total current density defined by the classical skin 

effect 

 ,n σ=J E (50) 

also known as Ohm’s law.  Js is the supercurrent density and must satisfy both London 

equations [London and London (1935)] which state 

 2 ands λ
∇× =−

HJ (51) 

 2 .s jωµλ
=

EJ (52) 

We now set out to use these conditions in order to solve Maxwell’s equations for the 

different regions of our superconducting structure.  To do this we assume fields propagating 

in the z-direction having the form )(
0

tzkj ze ω−−=EE . We can begin by using Maxwell’s 

equation for Faraday’s law given in phasor form 

 .jω∇× =−E H (53) 

On expanding this equation we find the only nonzero resulting equation is then 

 .z
z x y

Ejk E j H
x

ωµ∂
− − =−

∂
(54) 

We use Maxwell’s equation for Ampere’s law in phasor form to derive the other 

relations governing our structure. 

 jωε∇× = +H E J (55) 

From this equation we find that there are two resulting nonzero equations 

 andz y nx sx xjk H J J j Eωε= + +  (56) 
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.y
nz sz z

H
J J j E

x
ωε

∂
= + +

∂
(57) 

Now, if we substitute into this equation the current density equations (50) and (52) we find 

that  

 2

1 andz y x xjk H j E
j

σ ωε
ωµλ

 
= + + 
 

 (58) 

 2

1 .y
z z

H
j E

x j
σ ωε

ωµλ
∂  

= + + ∂  
(59) 

These two equations along with (54) make up the relations we will use to characterize 

our structure.  Initially looking at the insulating layer we know that there is no current flow in 

this region so Jn = Js = 0.  We then see (56) reduces to 

 .x
y

z

EH
k

ωε
= (60) 

It is noted that equation (54) does not change form and (57) can be reduced to 

 .y
z

H
j E

x
ωε

∂
=

∂
(61) 

We can replace the left hand side of (61) with the result of (60) to obtain 

 .x
z

z

E j E
k x
ωε ωε∂

=
∂

(62) 

Substituting (62) and (60) into (54) for fields Ez and Hy we see 

 
2 2

2 .x
z x x

z z

Ej jjk E E
k x k

ω εµ∂
− + = −

∂
(63) 

Reducing this equation we finally find 

 
2

2 2
2 ( ) .x

z x
E k E
x

ω εµ∂
= −

∂
(64) 
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Assuming Ex has the following form inside the insulating region  

 ( ) ( ) ,x x zk x k x j k z t
xE ae be e ω− −= +  (65) 

we see that (64) then reduces to 

 2 2 2 .x zk k ω εµ= − (66) 

This is the dispersion relation for the insulating barrier of our structure.  Now, we turn 

to the superconducting region where we have a nonzero supercurrent, Js. Due to the nonzero 

current density, equation (54) remains unchanged, and (58) and (59) lose their conductivity 

term.  If we solve the modified version of (58) for Hy we find  

 2 2

11 .y x
z

H E
k
ωε

ω εµλ
 

= − 
 

(67) 

Solving the modified version of (59) for Ez we obtain the result 

 
1

2 2

1 11 .y
z

H
E

j xωε ω εµλ

− ∂ 
= −  ∂ 

 (68) 

If we replace Hy with the result from (67) we find 

 .x
z

z

EjE
k x
∂

=−
∂

(69) 

Substituting the results of (67) and (69) into (53) we can determine the dispersion 

relation for the superconducting region of our structure 

 

2

2 2 2

2
2 2

2 2

11

1 .

x
z x x

z z

x
z x

Ejjk E j E
k x k

E k E
x

ωεωµ
ω εµλ

ω εµ
λ

∂  
− + =− − ∂  
∂  = − + ∂  

 (70) 
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Again assuming Ex is of the form given in (65), with a = 0 for the upper 

superconductor and b = 0 for the bottom superconductor to keep the electric field from 

diverging, we have 

 2 2 2
2

1 .x zk k ω εµ
λ

= − + (71) 

This is the dispersion relation for the superconducting region of our structure.  We see that 

the only difference between this relation and the one for the insulating layer is the 

dependence on the London penetration depth, λ.
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CHAPTER 3.  MAGNETIC VECTOR POTENTIAL METHOD 

The use of the magnetic vector potential, A is a powerful tool for solving Maxwell’s 

equations which has proven to be a mainstay approach for device level formulation including 

antenna, microwave, and optoelectronics as opposed to the traditional approaches we 

reviewed in the previous chapter.  As described by Balanis [Balanis (1989)], there are two 

ways to specify an electromagnetic boundary-value problem.  One way is the method we 

have just looked at, the current density method, which is a direct integration from J to E and 

H. The other method is the one that we will look at in this section, which is to determine A

from J and then E and H from A. While the latter method may seem more involved, we 

will show that this form is actually mathematically simpler because of our freedom of gauge.  

This will be demonstrated using the same superconducting transmission line structure we 

have looked at previously.  We believe that utilization of the magnetic vector potential to 

solve Josephson Junction problems will enable analytical closed form solutions to more 

complicated superconducting geometries that otherwise would require numerical techniques 

to solve.  However, but not to contradict ourselves, we will look at numerical solution 

techniques as well for their versatility in obtaining realistic graphical solutions for complex 

and irregular geometries.   

3.1  Introduction 

The magnetic vector potential stems from the absence of free magnetic poles.  This is 

most commonly exemplified by the following Maxwell equation: 

 0∇⋅ =B (72) 



www.manaraa.com

26 

 

Due to this, B can then be written as the curl of another vector quantity since the 

divergence of a curl is zero. 

 0∇⋅∇× =A (73) 

This vector is defined as the magnetic vector potential.  We can easily determine both 

magnetic and electric fields quite simply from this quantity using equation (74). 

 
.

t

=∇×
∂

=−
∂

B A
AE

(74) 

The reason we introduce A is because both the electric and magnetic fields remain 

unchanged under a scalar transformation of A. This enables us to choose the form of A that 

is most convenient to work with in a given gauge.  It is interesting to note here that from (74) 

B is not actually a true vector, but a psuedovector, since it is even under spatial inversion.  

3.1.1  Calculation of the Magnetic Vector Potential 

We now turn our attention to the calculation of the magnetic vector potential for a 

superconducting transmission line as discussed by Anderson, Mina, and Babaei Brojeny 

[Anderson et al. (2006)].  Again, we use the same geometry shown in Figure 1 and look at 

the TMz case.  Based on the symmetry of the problem we can choose a magnetic vector 

potential A such that Az is the only nonzero component of the vector potential given by 

 ˆ( ) ( ) ( ) .zA X x Y y Z z z= (75) 

We then solve the following wave equation to obtain the general form of the magnetic 

field potential in the three regions. 

 2 2 0ω µε∇ + =A A  (76) 
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This equation holds provided that the divergence of A is zero.  We use separation of 

variables to determine the general form of Az. Earlier we had defined the current density 

traveling in the y-direction to be zero leading to Bx = Ey = 0.  Using this and the relation 

between B and A given by (74) we have 

 0.yz
x

AAB
y z

∂∂
= − =
∂ ∂

 (77) 

Since we have already defined Ay = 0, we clearly see that 

 0.zA
y

∂
=

∂
(78) 

We can then use separation of variables with Az=X(x)Z(z).  If we choose 

 

2 2
2 2

2 2

2 2 2 2 2

1 1, , where

, and

Z X K
Z z X x

K K

κ

κ ω µε κ

∂ ∂
= − = −

∂ ∂
> + =

 (79) 

we have the following general solutions 

 ( ) , ( ) .i z KxZ z e X x eκ± ±= =  (80) 

Selecting a +z traveling solution and adding in the time dependence e-iωt we find the 

following solution for Az

( ) ( ) .zx x i k z tk x k x
zA ae be e ω−−= +  (81) 

This is obviously the vector potential given in the region of the insulating barrier, 

where 2 2
z xk k> and leads to the dispersion relation 

 2 2 2 .x zk k ω µε= − (82) 
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Looking at the value of kz
2 as a function of kx at fixed ω we find the following 

behavior shown in Figure 3 for a frequency of 100 x 109 rad/s. 

Figure 3.  Dispersion relation in the insulating region with ω = 100 G-rad/s. 

 

We see from the figure that at kx = 0 the value of kz = ω/c or in CGS units where c = 1, the 

wavenumber is equal to the frequency.  This is a familiar result and is expected.  To take a 

deeper look at the behavior of the dispersion relation we now look at the behavior as both kx

and ω are varied. 
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Figure 4.  Dispersion relation for the insulating region with varying values of kx and ω.

We see from the figure that this particular figure is one-quarter of a bowl type shape.  The 

relative values of kx to ω will distinguish the overall character of this figure.  Here we have 

plotted using a ratio of kx/ω ranging from 0 to 1 x 109 s/m.  We have plotted in this way in 

order to see the ( 0) /z xk k cω= =  value at a relatively realistic value of the angular frequency.   

To keep our vector potential from diverging, the general form of the magnetic vector 

potential for the top and bottom superconductors is then given by 

 
( )

( )

( )
,

( )
, .

x z

x z

k x j k z t
z top

k x j k z t
z bottom

A be e

A ae e

ω

ω

− −

+ −

=

=
(83) 
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However, the divergence of A must vanish for both regions if we want to work in the 

Coloumb gauge, but this is not the case for the general solutions we derived.  We must now 

apply a gauge transformation such that 

 .′→ = +∇ΛA A A
v

(84) 

Where Λ is a scalar function chosen to make the divergence of A vanish and, after 

some trial and error, is found to be 

 ( ) ( )
2 2 .zx x i k z tk x k xz

x z

ik ae be e
k k

ω−−Λ = +
−

(85) 

Now, A for the insulating layer becomes 

 ( ) ( )
2

( ) ( )
2 2

ˆ ˆ1 .x x x xz zk x k x k x k xi k z t i k z tz x zik k kae be e x ae be e zω ω

ω µε ω µε
− −− − 

= − + − + 
 

A (86) 

Where a = 0 for the top superconductor and b = 0 for the bottom superconductor as we saw 

before.  We can substitute this relation for A into (74) to determine the electric and magnetic 

fields in the dielectric region.  Taking the curl of A we find 

 ( ) ( ) ˆ.x x zk x k x i k z t
xk ae be e yω− −=− −B (87) 

Taking the negative of derivative of A with respect to time we see that 

 ( ) ( )
2

( ) ( )ˆ ˆ.x x x xz zk x k x k x k xi k z t i k z tz x xk k ikae be e x ae be e zω ω

ωµε ωµε
− −− −= − + +E (88) 

Equations (87) and (88) are the electromagnetic equations for the insulating region of 

the superconducting transmission line.  In order to get a detailed look at the behavior of the 

electromagnetic fields, we will look at their spatial and time dependence at a given frequency 

and wavenumber using the dispersion relation derived earlier.  Using this dispersion relation 

we see that at a frequency of 100 G-rad/s and kx = 100 m-1, kz = 348 m-1. In order to simplify 
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the electromagnetic equations further, we will assume the values of a and b to be 1 in the 

insulating region.  It is apparent from the electric field we derived that there are both real and 

imaginary components of the field.  However, to get a representation of the wave, we will 

only concern ourselves with the real-space result.  To do this, we will only observe the 

magnitude of the electric field ∗⋅E E . Since the magnetic field is a real vector we will plot 

this field with no modification.  We then find the following behavior shown below for the 

magnetic and electric fields in the insulating regime. 

Figure 5.  Magnetic field in the insulating region at t = 1s. 
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Figure 6.  Magnetic field in the insulating region at t = 2s. 

Figure 7.  Magnetic field in the insulating region at t = 3s. 
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Figure 8.  Magnetic field in the insulating region at t = 4s. 

Figure 9.  Electric field in the insulating region at t = 1s. 
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Figure 10.  Electric field in the insulating region at t = 2s. 

Figure 11.  Electric field in the insulating region at t = 3s. 
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Figure 12.  Electric field in the insulating region at t = 4s. 

 

For the superconducting region of the transmission line structure, we use the 

Helmholtz equation with a non-zero current since we have propagating currents in this 

region.  Equation (76) is rewritten as, 

 2 2 ,z zA A Jω µε µ∇ + = − (89) 

where J is the current density in the superconducting region.  The London equation relates 

the current density to the magnetic vector potential for a superconductor. 

 2

1J
µλ

= − A (90) 

Here, λ is the London penetration depth given by 
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2

2 .mc
nq
ελ = (91) 

In this equation, m is the mass, n the concentration, and q the charge.  The London 

penetration depth is the thickness of the surface layer in which currents and magnetic fields 

can exist.  General values for the London penetration depth are calculated to be about 4 x 10-6 

cm for many elemental metals at absolute zero. 

If we may digress slightly from our field calculations, it is interesting to note at this 

point that the magnetic field in the superconducting region should decay exponentially as 

[Ashcroft and Mermin (1976)] 

 /
0( ) .xB x B e λ−= (92) 

We will see that this relation is indeed found in our solutions using the magnetic 

vector potential. 

 Resuming our prior calculation we find that by inserting (90) into (89) the 

following dispersion relation exists in the superconducting region. 

 2 2 2
2

1
x zk k ω µε

λ
= − + (93) 

The dispersion relation found in (93) matches the dispersion relation found using 

current density method but using much simpler mathematics to do so.  This relation is very 

similar to the dispersion relation found for the insulating region with the exception of the 

London penetration depth term.  Still, this relation is simple enough that we can visualize the 

general form of it based on the result for the insulating region.  Since we are working with a 

TMz mode of propagation, our Helmholtz equation in the Lorentz gauge reduces to  

 2 2 1( ) 0.z zA Aω µε
λ

∇ + − = (94) 
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This is very similar to the Helmholtz equation we found in the insulating region with 

an extra term in the coefficient of Az. Solving in a similar manner as previously, we 

determine that A at the top and bottom superconductors is given by 

 

2
( ) ( )

2 2 2 2

2
( ) ( )

2 2 2 2

1ˆ ˆ1

1ˆ ˆ1 .

x xz z

x xz z

k x k xi k z t i k z tz x z
top

k x k xi k z t i k z tz x z
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ik k kde e x de e z

ik k kce e x ce e z

ω ω

ω ω

ω µε ω µε λ ω µε

ω µε ω µε λ ω µε

− −− −

− −

 −
= + − − 

 
 

= + − − 
 

A

A
(95) 

By factoring and rearranging terms we can write these equations more compactly as 

 

2
( )

2
2

2

2
( )

2
2

2

ˆ ˆ1 1

ˆ ˆ1 .1

x z

x z

k x i k z tz x z
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k x i k z tz x z
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ik k kde e x z

ik k kce e x z

ω

ω

ω µε ω µε
λ

ω µε ω µε
λ

− −

−

  
  −

= + −  
  −   
  
  

= + −  
  −   

A

A

(96) 

In the above equations, the coefficients c and d can be written in terms of coefficients 

a and b using boundary conditions.  To be thorough we confirm that the divergence of both 

the top and bottom superconductor magnetic vector potentials goes to zero. 

 

2
( ) ( )

2 2 2 2

2 2
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z
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  − ∂ ∂
∇ ⋅ = + − −   ∂ ∂    

 
= + − − 

 

= − + −

A

2
 
 
 

 (97) 

Using (93) it is clear that the quantity on the final line in parenthesis is equal to zero, 

confirming that the divergence of A does indeed go to zero.  By a similar solution, the 

divergence of Abottom goes to zero. 
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Using the relations found in (74), the magnetic and electric fields can be 

determined in the same way as in the insulating layer.  After taking the curl of the magnetic 

vector potential and rearranging terms, we find the following relation for the magnetic field 

for the top and bottom superconductors. 

 

( )

( )

2

2
2

2

2

2
2

2

ˆ
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ˆ
1

zx

zx
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 
 
 
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 −
 

B

B

(98) 

 

We can also use the dispersion relation (93) to rewrite these equations in varying 

forms.  From equation (98) we see that since kx is a function of 1/λ, the magnetic field 

inherently decays as a function of the London penetration depth as discussed earlier.   

In order to obtain a physical representation of the spatial and time dependence of the 

magnetic field, we look at the spatial dependence of the magnetic field at selected times.  By 

symmetry, the top and bottom magnetic field equations should yield the same result, so we 

will focus on the magnetic field for the top of the structure.  To get a realistic sense of time 

dependence we use a frequency of 100 G-rad/s, which is in the range of a typical Josephson 

frequency.  This frequency value gives rise to a Josephson length of 150 µm, which is 

equivalent to the London penetration depth, but for a Josephson junction.  For consistency we 

will use the same values of wavenumbers that we used in the insulating layer and set all other 

general constants equal to 1.  In order to look at the real component of the magnetic field we 
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consider the magnitude in the same manner as we did for the electric field before.  The 

following shows the results of these simulations. 

Figure 13.  Magnetic field in the superconducting region at t = 1s. 
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Figure 14.  Magnetic field in the superconducting region at t = 2s. 

Figure 15.  Magnetic field in the superconducting region at t = 3s. 
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Figure 16.  Magnetic field in the superconducting region at t = 4s. 

Now, we derive the Electric Field equations using the magnetic vector potential and 

equation (74).  Taking the negative of the derivative of A with respect to time we find the 

following equations for the top and bottom superconductor electric fields. 
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(99) 

 In a similar manner we can obtain a visualization of the spatial and time 

dependence of the electric field equations using the same simplifications and values used to 

plot the magnetic field previously.  
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Figure 17.  Electric field in the superconducting region at t = 1s. 

Figure 18.  Electric field in the superconducting region at t = 2s. 
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Figure 19.  Electric field in the superconducting region at t = 3s. 

Figure 20.  Electric field in the superconducting region at t = 4s. 
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3.1.2  Summary of Solution 

In this section we have calculated the dispersion relation, magnetic vector potential, 

and electromagnetic field equations for the insulating and superconducting regions of the 

superconducting transmission line depicted in Figure 2.  We have shown that by using the 

magnetic vector potential we can derive the same result for the dispersion relation for these 

regions as derived by the methods reviewed in chapter 2.  We also found closed form 

solutions for the propagating fields of the superconducting transmission line structure.  These 

fields were then simulated using a Matlab script in order to obtain a realistic view of the 

behavior of these fields.  We will continue to build upon these results by considering the 

coupling between the superconductors in the following sections. 

3.2  The Josephson Current 

In the previous section we looked at the solution of the electromagnetic fields for 

superconductors separated by an insulating boundary without taking into account any 

quantum effects.  As we discussed earlier, the Josephson current is represented by 

sin( )cJ J φ= , where Jc is the superconducting critical current and φ is the phase difference 

across the boundary.  In the situation we are considering, we have a constant DC bias being 

applied across the junction via an external magnetic field.  The superconducting current is 

then simply given by the AC Josephson effect 

 0
2sin (0) eVtJ J δ  = −    h

(100) 

The problem we are now faced with is one of solving equation (89) with the above current 

substituted.  In the following section we will look at the Sine-Gordon equation which 
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describes the coupling between superconductors, and attempt to solve for the electromagnetic 

fields across the boundary using the finite difference method.  We will also go beyond our 

original objectives and discuss how using the finite difference method may be a more 

modular solution method for probing Josephson junction structures having unique 

geometries, defects, and inhomogeneities. 

3.2.1 Sine-Gordon Equation 

The non-stationary Sine-Gordon equation is given by 

 
2

2
2 2 2

1 1 sin .
Jv t

φφ φ
λ

∂
∇ − =

∂
(101) 

Where v is the junction velocity and λJ is the Josephson length.  This equation describes the 

phase difference or coupling across the boundary between superconductors.  We will now 

compare the numerical solutions between both the non-stationary version of the Sine-Gordon 

and the stationary or linear version in order to obtain a realization of the coupling occurring 

across the insulating barrier.  This comparison will enable us to determine the time scale at 

which the linear approximation remains valid.  The linear Sine-Gordon equation is simply 

determined using the small angle approximation where ϕϕ →sin and is given by 

 
2

2
2 2 2

1 1 .
Jv t

φφ φ
λ

∂
∇ − =

∂
(102) 

 Since the Sine-Gordon equation ignores dissipative effects, we only need to 

determine the value of the velocity v and the Josephson penetration depth λJ. The Josephson 

length should not be confused with the London penetration depth, λ. The Josephson length is 
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due to screening caused by supercurrents in the junction and is about 4 orders of magnitude 

larger than the London penetration depth.  These two quantities are then expressed as 

 1
4

v c
CDπ

 =  
 

(103) 

Here C is the capacitance per unit area of the junction and D is the layer thickness.  

The value of v is generally of the order c/20.  The Josephson length is defined as, 

 J
J

vλ
ω

= (104) 

The value of the Josephson frequency, ωJ, is generally of the order of 100 GHz giving us a 

value of 150 µm for the Josephson length.  Using these values and ranging over a value of 

300 µm in the z direction and looking over a period of 0.01 s we see the following result 

using φ with a general form of )( tkrje ωφ −= where k = 1 for this simulation.  Figure 21A is 

the result using the non-equilibrium equation and figure 21B is the result assuming small 

oscillations. 

 

Figure 21.  Plot of the solution to the non-stationary (A) and stationary (B) Sine-Gordon 

equations for 0 < t < 0.01s. 
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In Figure 21 we see an incredibly large discrepancy between the non-linear 21A and 

linear 21B results.  This does not mean, however, that our small oscillation model is 

incorrect.  If we narrow our time scale down by a factor of 100 we see the following results 

for the non-linear solution 22A and the linear solution 22B. 

 

Figure 22.  Plot of the solution to the non-stationary (A) and stationary (B) Sine-Gordon 

equations for 0 < t < 0.0001s. 

 

If we look at the maximum amplitudes in Figure 22 we see about a 4.2% difference in 

the φ(t = 0.0001 s) results.  This gives us an indication of the time scale over which the linear 

model remains valid for this frequency and what is meant by small oscillations.  From this 

exercise we can determine that the linear equation will yield a less than 5% difference for 

radiation with frequencies greater than 10 kHz.  What is interesting to note is the fact that the 

time scale seems to be the main determining factor in whether or not the linear equation is a 

good approximation.  This means that coupling across the barrier is better described by the 

linearized Sine-Gordon equation for higher frequencies, and is the reason why this model is 

in such good agreement with experimental results for these applications.   
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It might seem that the length of the barrier has no effect on the validity of the 

linearized equation, but this is far from the truth.  The length of the barrier plays a vital role 

in the behavior of our transmission line.  Its main constraint, however, is that the length of 

the barrier must be smaller than the dephasing length in order for coupling between the 

superconductors to even occur.  It is this constraint that makes D small enough that the linear 

equation is a good approximation only for high-frequency applications.  This implies that if 

the penetration depth were sufficiently large, the linear equation would also be reasonable to 

use for lower frequency modeling as well.  This is important since the linear equation has 

been used in the development of much of today’s useful technology employing Josephson 

junctions.  It is important to realize that even though this equation models the behavior of 

many of these applications quite well, it is still an approximation and may have limitations in 

modeling future technologies. 

3.2.2 Solution Using the Josephson Current 

As we stated earlier, we now look at the solution of equation (89) using the current 

derived for the AC Josephson effect.  Inserting the current from equation (17) we find 

 
2

2
02

2sin (0)z
z

A eVtA J
t

µ δ∂   ∇ − = − −  ∂   h
(105) 

If we assume δ (0) = 0, then the basic form of the differential equation we are trying 

to solve with the Josephson Current is 

 ( )
2 2

2 2 sinA A J t
z t

µ ω∂ ∂
− =−

∂ ∂
 (106) 



www.manaraa.com

49 

 

where, 2eVω = h . Solving this system in the same manner we did before now becomes 

much more difficult because of the transcendental equation.  Instead, we turn to numerical 

techniques to simplify the problem. 

The form of the second order derivatives from the forward difference formula are 

given by 

 
2

2 2

( 2, ) 2 ( 1, ) ( , ) and,
( )

A A i j A i j A i j
z z
∂ + − + +

=
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 (107)  
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=

∂ ∆
 (108) 

The backward difference formula yields the following second order derivatives 
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 (109) 
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=
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 (110) 

Using the central difference formula, the form of the second order derivatives in the equation 

above can be re-written as 
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2 2
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Substituting the central difference forms of the second derivatives into equation (106) we 

find 

 2 2 2 2

1 1 ( 1, ) ( 1, ) ( , 1) ( , 1)2 ( , )
( ) ( ) ( ) ( )

sin( ).

A i j A i j A i j A i jA i j
z t z t

J jµ ω

  + + − + + −
− =− + ∆ ∆ ∆ ∆ 

−

(113) 
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If we let z t∆ = ∆ , this equation can be reduced even further having the form 

 2( 1, ) ( 1, ) ( , 1) ( , 1) ( ) sin( ).A i j A i j A i j A i j z J jµ ω+ + − − + − − = − ∆  (114) 

This is then the equation that governs the form of A in the insulating region between the two 

superconductors when the barrier thickness is such that the AC Josephson effect is present.  

In the superconducting region we simply replace the equation for the current density with the 

relation found in equation (90) and equation (114) becomes 

 2
2

1( 1, ) ( 1, ) ( , 1) ( , 1) ( ) ( , ).A i j A i j A i j A i j z A i j
λ

+ + − − + − − = ∆ (115) 

We can use the fact that J=0 in purely insulating regions where the spacing between 

superconductors is too great for coupling between the barrier to occur.  In this way we can 

introduce defects and other types of random surface and boundary effects that would 

otherwise be too difficult to solve by hand.  Using these equations for the magnetic vector 

potential we can apply the iterative finite difference method to calculate A. In this way, we 

can study different geometries and create defects in the junctions by purely changing the 

current density for that particular region. 

 To begin, we need to set up the structure of our Josephson junction.  The preliminary 

Matlab script for this initialization is found in Appendix C.  We begin our simulation by 

considering a single junction comprised of only 2 homogeneous and isotropic 

superconductors separated by a thin homogenous and isotropic insulating layer.  We will take 

a 2-D slice in the middle of the structure to eliminate the need to take into account surface 

effects from above or below the plane under consideration.  A major part of this initialization 

process is to incorporate the boundary conditions.  Since we will again be looking in the xz-

plane as a function of time, we will specify continuous boundary conditions in the z-direction 
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and purely insulating boundary conditions on the surface of our superconductors.  Since we 

will be simulating the fields of this structure under the conditions of the AC Josephson effect, 

we will need to take into account the current due to the externally applied magnetic field.  

For the purposes of the simulation we will constrain this current to the surface of our 

superconducting region.   

 In order to determine this current we use the relation between magnetic field and 

current density in an infinite conductivity media given by Balanis [Balanis (1989)]. 

 ( )2 1ˆ sn H H J× − = (116) 

Here H1 and H2 are the values of the tangential magnetic field on either side of the surface, Js

is the surface current density, and n̂ is a unit vector perpendicular to the surface.  For our 

simulation we will let the difference between tangential components of the magnetic field 

across the boundary be 5 A/m, and thus the current density will be 5 A/m.  This external 

magnetic field will be a constant DC field so we will constrain the surface current density to 

this value for the duration of the simulation.   

 Using this setup and initial conditions, we develop a solution using the iterative finite 

difference method.  We define a square mesh of 200 x 200 points in the x-direction and in 

time as an initial setup.  In the future we will expand into the z-direction as well to create a 

cubic mesh from which we can extract cross sections and develop movies as we did in our 

transmission line solution earlier.  In our simulation, dx and dt represent the size of the space 

and time elements respectively.  These quantities are set equal, as described above, to 

simplify our calculation.  The successive-over-relaxation method is used to iteratively solve 

for the magnetic vector potential throughout the mesh as outlined by Sadiku [Sadiku 2001].  

In order to use this method we define the following residual  
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( -1, ) ( 1, ) - ( , -1) - ( , 1) ( , )R A i j A i j A i j A i j dx dt A i jµ= + + + + ⋅ ⋅ ⋅ (117) 

for the insulating region.  For the superconducting region we then have  

 ( -1, ) ( 1, ) - ( , -1) - ( , 1) - cos( ).R A i j A i j A i j A i j dx dt J f jµ= + + + ⋅ ⋅ ⋅ ⋅ ⋅ (118) 

The magnetic vector potential can be calculated at each mesh point using R(i, j) for 

the nth iteration multiplied by a convergence factor ω to increase the convergence rate as seen 

in (119). 

 1( , ) ( , ) ( , )
4

n n nA i j A i j R i jω+ = +  (119) 

Generally convergence factors between 1 and 2 are used.  As convergence is reached 

R(i, j) tends to zero, and when the average value of R(i, j) is below 1.0 x 10-5 for a given 

iteration, convergence is considered reached.   

The following figure shows the initial setup of the geometry of the junction we are 

considering in space and time. 

Figure 23.  Space-time geometry of the Josephson junction under consideration. 
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From this figure we see both superconductors separated by an insulating layer in the x-

direction, and this geometry is continuous in time.  Finally, the electromagnetic fields can be 

determined from this method using numerical derivative techniques.  In this way visual 

solutions can be obtained for the electromagnetic fields of the structure in space and time.   

 Using the finite difference method is a powerful tool for solving for the 

electromagnetic fields of Josephson junction structures and allows us the freedom to add 

many factors to our simulations.  Here, we have laid the foundation for a solution method 

using the finite difference method.  In the future there we foresee great challenges in the 

further development of this method for characterization and defect analysis.  
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CHAPTER 4.  SUMMARY AND DISCUSSION 

We began our efforts with the motivation for finding a novel solution method for a 

superconducting transmission line and Josephson like structures in order to better understand 

their behavior and to hopefully begin efforts that would eventually lead to a defect 

characterization technique in such structures.  We formulated a solution method for a 

superconducting transmission line using the magnetic vector potential as a starting point.  

This solution method allowed us to find closed form solutions of the electromagnetic field 

equations and to view these solutions graphically using realistic values for the frequency and 

wavenumber as determined from the dispersion relation.  The example we presented of a 

planar geometry transmission line consisting of two superconducting regions separated by a 

thin insulating region is a simple starting point showing the viability of this option as a 

solution method for similar structures of different geometries and initial conditions. 

4.1  Summary of Work 

In the preceding sections we began by reviewing the work of Josephson and the 

events leading up to his discovery of the Josephson junction.  It was this work on the 

coupling between superconductors separated by a thin non-superconducting layer that has led 

to an increasingly large body of research on superconducting devices.  More recently, it was 

the work by Wu and others that re-kindled the interest in the investigation of the 

electromagnetic fields of a superconducting layered device and was the starting point of the 

research in this paper.  It was from this point that we began looking at the common methods 

used to solve for the electromagnetic fields of such a structure as discussed earlier in Section 
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2.2.  After reviewing these methods, it was hypothesized that using the magnetic vector 

potential may be a simpler way to obtain the same result. 

Using the magnetic vector potential as a starting point with a transverse magnetic to z

mode of propagation, the electromagnetic fields for the superconducting and insulating 

regions of the superconducting transmission line were calculated.  These results were 

explored further by looking at the physical representation of these fields in space and time.  

Next, we explored the Sine-Gordon equation in an attempt to better understand the coupling 

of a Josephson junction before diving into the problem of solving for the electromagnetic 

fields of a Josephson junction.  Finally, we concluded our work by beginning to look at the 

solution for the electromagnetic fields in a Josephson junction by using the current for the 

AC Josephson effect that we had evaluated earlier.  Our attempt at this solution utilized 

calculating the magnetic vector potential using the finite difference method.  In this way we 

believed we could solve for very complex geometries that ordinarily could not be solved by 

hand.  It is then our hopes to expand on this method in order to develop a modular function to 

solve for the fields Josephson-type structures. 

4.2  Discussion of Results 

We began our new work by looking at the insulating region of the superconducting 

layered structure depicted in Figure 2.  Our initial result showed that we can obtain the same 

dispersion relation seen in equation (81) using the magnetic vector potential as we saw before 

in section 2 using other methods.  Looking at this equation graphically, we saw in Figure 4 

that the generic shape of kz
2 as a function of kx and ω was that of a bowl in three dimensions.  

This result is useful in our simulations of the electromagnetic fields where we can then use 
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realistic values of the wavenumbers and frequency in our results to obtain a physical 

representation of these fields.  This result for the dispersion relation was what we expected 

based on previous results.    

In addition to the dispersion relation, we carried out our formulation further in order 

to obtain the magnetic vector potential using the Coulomb gauge and from there the resultant 

electromagnetic fields using Maxwell’s equations.  In Figures 5 – 8 we looked at the y-

component of the magnetic field as a function of space and time.  We must note here that the 

data in the figures were simulated using a constant value of time and what we have plotted is 

the value of the magnetic field in the xz-plane.  In these figures we see a wave propagating in 

the z-direction with a zero value in the middle of the insulating region.  This is what we 

would expect.  From the magnetic field equation we derived in (87), we clearly see a 

propagation term in the z-direction.  Also, if we were to set x = 0, we would have a zero 

result provided constants a and b were equal.  In the case of our simulation these were both 

set to 1 for simplicity, but would normally be determined by a set of initial conditions.   

Our result for the electric field in this region was given by equation (88) and 

simulated in Figures 9 – 12 in the same manner as the magnetic field.  Here we plotted the 

magnitude of the electric field so imaginary components could be neglected, and to consider 

a term relating to the energy of the electric field.  The energy density of the electric field is 

given by 

 2 .
2Ew ε

= E (120) 

 Again in Figures 9 – 12 we see a wave propagating in the z-direction, which is 

consistent with the equation we derived.  We see from the figures that at a given z-position 
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the value of the electric field is constant across the insulating barrier.  This is to be expected 

since this region is similar to the region in a parallel plate capacitor, where the electric field is 

also constant between the plates.  In this case the plates are our superconductors. 

Moving on to the superconducting region, we used the same method as for the 

insulating region, but using the current for the superconducting region.  Our results for the 

electromagnetic fields for the top and bottom superconductors are then summarized by 

equations (98) and (99).  We again look at the magnetic field first. 

In this case, since we have imaginary components of the magnetic field, we simplify 

the result by simulating the magnitude of the magnetic field as we did for the electric field 

earlier.  In the case of the magnetic field, the energy density is given by 

 21 .
2Bw

µ
= B (121) 

Figures 13 – 16 depict the magnetic fields in the top superconducting layer in the xz-plane 

for times of 1s, 2s, 3s, and 4s.  The propagation of the magnetic field in the superconducting 

layer is consistent with that seen in the insulating layer as expected.  What is not consistent 

between the two regions is the phase.  We note that the minimum and maximum values do 

not align along the insulating/superconducting boundary as one would expect.  We do note, 

however, that these fields were not plotted in the same manner.  While we are looking at the 

magnitude of the magnetic field in the superconducting layer, we looked at the actual 

magnetic field in the insulating layer.  Perhaps if we compared apples to apples in this case 

we would have a better comparison of this quantity.  We will get a better idea of the possible 

cause of this phenomenon when we look at the comparison of the electric fields in the two 
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regions.  Finally, we note that the magnitude of the magnetic field does indeed decrease as 

expected as we move in the x-direction. 

 Turning now to the electric fields in the superconducting region, we look at figures 17 

– 20.  We see, as we have for all of the fields so far, that the electric field is propagating in 

the z-direction.  In this case, we do not see a phase difference between the insulating and 

superconducting regions.  This leads us to believe that the difference in representation of the 

magnetic fields is the cause of the apparent shift in phase, however, more work is necessary 

to verify this but will not be carried out here since this is not the focus of our efforts.  It may 

be possible that in calculating the magnitude of the magnetic field, we have somehow mixed 

in the phase due to the imaginary component we were trying to eliminate.  Returning to our 

discussion of the electric field, we note that the electric field also shows a decaying behavior 

as it penetrates into the superconductor.  Looking at our solution to the superconducting 

transmission line problem, we see that we have successfully calculated the electromagnetic 

fields of this structure using the magnetic vector potential as a mathematical tool to eliminate 

the need for direct integration. 

 Building upon our work on the superconducting layered transmission line, we 

consider a similar structure, but one in which the spacing between superconductors is 

sufficiently small enough for coupling across the barrier to occur as predicted by Josephson.  

In this case we used the Sine-Gordon equation to probe this coupling.  By solving both the 

linear and non-linear forms of the Sine-Gordon equation we were able to gain insight into the 

time scale over which the linear approximation remains valid. 

 From our results it is apparent that the linear approximation is a good approximation 

on very short time scales, or in other words very high frequencies.  This bodes well for the 
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work being done on Josephson devices.  Since current efforts are focused on the fast 

switching of such devices the linear approximation is a logical way to simplify simulations of 

the coupling effects of such devices.  This enables accurate results with much simpler 

computation. 

 Finally, our analysis of the superconducting layered structure introduced all the way 

back in Figure 2 led us to the problem of again solving for the electromagnetic fields of the 

structure, but this time taking into account the coupling between superconductors  in the form 

of the AC Josephson current.  To this end, we again use an approach involving the magnetic 

vector potential, but this time we formulate a numerical solution using the finite difference 

method.  Our basic solution scheme is summarized in Section 3.2.2.  A summary of the 

necessary future steps is given in the following chapter.   Appendix C also contains sample 

Matlab scripts used to setup the problem.  We have presented an initial step in forming a 

modular function to simulate the electromagnetic fields of a Josephson junction to develop a 

method of characterization.  It is our hope that this characterization method could ultimately 

be used to study defects in Josephson junctions in order to perform in situ calibration of 

devices using Josephson junction technology. 
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CHAPTER 5.  FUTURE DIRECTIONS 

With the work that we have completed and the discussion above there are some 

obvious directions for our research to take.  The most notable is the forward development of 

our numerical solution for the electromagnetic fields of a Josephson junction using the finite 

difference method.  In this chapter we will discuss the necessary future steps to complete the 

solution.  Next, we will look at the expansion of our solution for the electromagnetic 

description of a superconducting transmission line using the magnetic vector potential.  As 

we discussed earlier we believe that this method could easily be adapted to different 

geometries with similar results.  Here, we will discuss logical future steps in the expansion of 

this method.  Lastly, we will consider the many quantities and simplifications we made along 

the way and discuss their possible impact and the way that they may be incorporated possibly 

leading to a more accurate solution to the problems we have discussed thus far in this paper. 

5.1  Josephson Current 

We presented a setup of the formulation using the finite difference method to solve 

for the electromagnetic fields of a Josephson junction.  While the basic structure and 

equations of this method were laid out and defined, work is still necessary to further develop 

this technique.  Boundary conditions need to be appropriately applied and the numerical 

derivatives defined in order to calculate the electromagnetic fields. 

There are many paths that can be taken with our finite difference routine.  One is to 

refine the script and take into account other factors such as varying the frequency and 

wavenumber, and even considering imaginary components of these quantities.  The path that 

we are most interested in, however, is looking at defects in the Josephson structure.  In order 
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to accomplish this, a more tedious task of possibly manually creating a mesh of different 

regions and current dependencies may be necessary.  In this way we can explore defects in 

both the superconducting and insulating regions such as vortices, or regions where coupling 

across the boundary may not occur.   

In addition, we can look at more exotic Josephson junction geometries.  This would 

then be a simple way to create new geometries and test for novel properties before 

synthesizing an actual junction.  As we noted in our initial case we are only considering a 

single junction.  Future simulations would take into account many junctions, possibly of 

different sizes and boundaries.  Ultimately we would build toward our goal of being able to 

characterize actual Josephson devices in order to study their electromagnetic properties in 

order to make more useful and precise devices. 

5.2  Higher Complexity Geometries 

In our solution method in Section 3.1, we solved for the magnetic vector potential in 

planar coordinates for a TMz polarization, and later calculated the electromagnetic equations 

from this vector potential.   While our results were interesting, there is a multitude of other 

situations we could explore using this same method.  Staying within the same basic 

geometry, we can begin looking at different initial conditions by looking at different modes 

of propagation.  While other transverse magnetic TM modes are just rotations of our 

coordinate system, higher order TM modes, transverse electric TE modes, transverse 

electromagnetic TEM modes, or even hybrid modes may yield interesting results.  However, 

to explore these electric modes we would need to introduce the electric vector potential.  This 
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potential is the analog of the magnetic vector potential and has a similar basic wave equation 

given by 

 2 .β ε∇ + =−2F M (122) 

The solution to this equation follows from the duality theorem, not to be confused with wave-

particle duality, where variables in two equations that occupy the same position are known as 

dual quantities, and the solution for one of the quantities can be formed by identical exchange 

of symbols from the other.  From here, we can easily expand our previous efforts to cover 

many alternative planar configurations. 

 Expanding our solution from the planar geometry the next logical geometries would 

be cylindrical and spherical geometries.  We could possibly foresee a configuration similar to 

that of a coaxial cable with two superconducting regions separated by a thin insulating region 

as shown in Figure 24. 

Figure 24.  Coaxial configuration:  Two superconducting regions separated by an insulating 

region. 
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It may even be interesting to look at the spherically symmetric configuration of two 

concentric hemispheres.  In each of these symmetric geometries we can also attempt to look 

at the different modes of propagation in a similar manner as we discussed for the planar case. 

5.3 Additional Parameters 

When we developed our superconducting transmission line formulism we assumed 

some parameters to be negligible and neglected some of the dependencies of other 

parameters when we looked at the physical nature of the electromagnetic fields of the 

structure.  There may be some value, in order to obtain highly accurate solutions, to add in 

other parameters to achieve our goal.  In this section we will briefly highlight some of the 

parameters, which may add to the physical accuracy of our solutions.   

The first quantity, which we pointed out before in our solution method to the 

superconducting transmission line, is the electric potential Φ. This quantity is given by  

 31 ( )( ) .
4

xx d x
x x
ρ

πε
′

′Φ =
′−∫ (123) 

We see from the above equation that the electric potential will exist when we have a net 

charge.  In our solution to the superconducting transmission line problem, we assumed no 

free charge.  However, it is likely that a net charge could build up in our device.  In this case 

we would need to add a term using the electric potential as a correction to our original 

solution.  The electric potential will not affect the magnetic field that we calculated, but the 

equation for the electric field becomes 

 .
t

∂
Ε=−∇Φ −

∂
A (124) 
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In addition to neglecting the free charge in the system under consideration, we also 

made the simplification that the permeability and permittivity were constant valued, and even 

further we assumed that they were real quantities.  However, the permittivity is notably 

frequency dependent and begins to have a major impact as we go to higher and higher 

frequencies.  The complex dielectric quantity is then given by [Dressel and Grüner (2002)] 

 1
1

4 ( )ˆ ( ) .i πσ ωε ε ω
ω

= +  (125) 

Here, 1ε is the real permittivity, 1σ is the conductivity, and ω is the frequency.  We note 

again that the real permittivity and the conductivity are both frequency dependent as well.  

This now gives us three “layers” of frequency dependence.  Where do we end?  Other 

parameters are also frequency dependent, temperature dependent, pressure dependent, etc.  

Furthermore there are properties intrinsic to different superconductors such as type 1, type 2, 

and high temperature superconductors that have been neglected.  At some point we must step 

back and look at the problem we are trying to accomplish.  Looking at all of the relations and 

properties that exist for transmission lines, coupling conditions, and general behavior of all 

kinds of solids, we see one clear property.  Every case is different in some way.  We cannot 

come up with one ultimate formula that will govern all the “real world” properties of every 

single configuration that nature allows.  In order to accurately model a specific system, we 

must take into account the properties of that specific system.  To this end, the best solution 

may be to combine experimental data of specific materials with solid state and 

electrodynamic theory in order to form a unique solution for a given system.  
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APPENDIX A.  MATLAB GRAPHING SCRIPTS 

In order to simulate the graphics in section 3.1.1 for the electromagnetic fields 

propagating in the superconducting transmission line, a short script written in MATLAB was 

utilized in order to handle the 3-dimensional graphics.  MATLAB lends itself well to 

multidimensional analysis and graphics because of its multitude of predefined matrix 

functions and its ability to handle large and multidimensional arrays efficiently.  While 

MATLAB was used in order to compute the electromagnetic field values, Origin graphical 

software was used to graph the results.   

In addition to the 3-D electromagnetic field graphics shown earlier, short movie files 

were also created in order to view the dynamic changing of the electromagnetic field values 

with time.  These movies could not be presented here, but are a part of the oral dissertation 

and can easily be recreated using the sample script shown below.  Below then is a sample 

MATLAB script used to compute the electromagnetic fields in the insulating region.  This 

script both saves files for plotting in Origin as well as creates an AVI file in MATLAB that 

can be viewed with any compatible AVI player such as Windows Media Player. 

 

%%%Electromagnetic field simulator for the fields in the insulating 
%%%region of a superconducting transmission line 
 
%Ignore all warnings and clear all variables 
warning off; 
clear all; 
 
%Initialize constants 
w = 100e9; %rad/s 
kx = 100;  %1/m 
kz = 348; %1/m 
c=3e8; %m/s 

%Set x and z dimensions for movie axes 
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xdim=-40e-5:.25e-5:40e-5; 
zdim=-15e-3:.25e-3:15e-3; 
 
%initialize movie image counter 
l=1; 
 
%begin time loop 
for i=0:.1:10  
%initialize row counter 
m=0; 
 %begin x loop 
 for j=-40e-5:.25e-5:40e-5 
 %increment row counter 
 m=m+1; 
 %initialize column counter 
 n=0; 
 %begin z loop 
 for k=-15e-3:.25e-3:15e-3 
 %increment column counter 
 n=n+1; 
 %calculate x-component of Electric field 
 Efieldx=c^2*(kz*kx*(exp(kx*j)-exp(-kx*j))*exp(sqrt(-1)*(kz*k-
w*i))); 
 %calculate z-component of Electric field 
 Efieldz=c^2*(kx^2*(exp(kx*j)+exp(-kx*j))*exp(sqrt(-1)*(kz*k-
w*i))); 
 %calculate magnitude of electric field 
 Efield(m,n) = sqrt(Efieldx^2+Efieldz^2); 
 %calculate Magnetic field 
 Bfield(m,n)=-kx*(exp(kx*j)-exp(-kx*j))*exp(sqrt(-1)*(kz*k-
w*i));   
 %end z loop 
 end 
 %end x loop     
 end 
 %String Concactinate time counter 
 istr = strcat(num2str(i),' (s)'); 
 %Start a new figure for Efield movie image 
 figure(4) 
 %Clear previous figure 
 clf; 
 %Plot 3-d countours of Electric field using 100 contours 
 contour3(zdim,xdim,Efield,100) 
 %Hold the current figure to plot over 
 hold on 
 %Set axis dimensions and ticklength 
 axis([-15e-3,15e-3,-40e-5,40e-5]) 
 set(gca,'TickLength',[.025,.025])     
 %Label x and y axes and enter current time as title 
 xlabel('Distance (m)') 
 ylabel('Distance (m)') 
 title(istr) 
 %Add frame to movie 
 M(:,l)=getframe; 
 %Turn off figure hold 
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hold off 
 

%Start new figure for Bfield movie image 
 figure(6) 
 %Similar setup as for Efield 
 clf; 
 contour3(zdim,xdim,Bfield,100) 
 hold on 
 axis([-15e-3,15e-3,-40e-5,40e-5]) 
 set(gca,'TickLength',[.025,.025]) 
 xlabel('Distance (m)') 
 ylabel('Distance (m)') 
 title(istr) 
 %Add frame to Bfield movie 
 D(:,l)=getframe; 
 hold off 
 %Increment movie frame 
 l=l+1; 
 

%Use if statements to save files at time = 1,2,3,and 4 seconds  
 if i==1 
 save Efield1.dat Efield -ascii -tabs 
 save Bfield1.dat Bfield -ascii -tabs 
 elseif i==2 
 save Efield2.dat Efield -ascii -tabs 
 save Bfield2.dat Bfield -ascii -tabs 
 elseif i==3 
 save Efield3.dat Efield -ascii -tabs 
 save Bfield3.dat Bfield -ascii -tabs 
 elseif i==4 
 save Efield4.dat Efield -ascii -tabs 
 save Bfield4.dat Bfield -ascii -tabs 
 end 
 
%end time loop 
end 
 
%Initialize file and store Electric field movie 
aviobj = avifile('EfieldVid','compression','indeo5', 'FPS', 10); 
%Add frames to Electric field movie 
aviobj = addframe(aviobj,M); 
 
%Initialize file and store Magnetic field movie 
aviobj = avifile('BfieldVid','compression','indeo5', 'FPS', 10); 
aviobj = addframe(aviobj,D); 
%Close AVI files so they are no longer writeable and can be viewed. 
aviobj = close(aviobj); 
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APPENDIX B.  MATHEMATICA COMPUTATIONS 

In order to calculate the numerical results shown in section 3.2.1., Mathematica’s 

numerical derivative (ND) solver was used.  The ND solver enables graphical representation 

of complex differential equations, including transcendental equations such as the Sine-

Gordon equation.   This ability then makes the ND solver the perfect choice for solving this 

particular equation.  The first two equations solved in the example Mathematica notebook 

shown below are for the general form of the linear approximation and non approximated 

forms of the Sine-Gordon equation over a time period of 15 seconds.  The third and fourth 

graphical representations are for the specific form of the Sine-Gordon equation relating to the 

coupling between superconductors in a weak-link Josephson junction.  These are the figures 

we saw in section 3.2.1 for the time period of 0 to 0.01 seconds.  Below is a sample 

Mathematica notebook used to solve different forms of the Sine-Gordon equation under 

unique boundary conditions. 

 

Linear Approximation to the Sine-Gordon equation 
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Non-linear Solution to the Sine-Gordon equation 
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Non-linear solution using values of ω=c/20 and λJ=150e-6m 
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APPENDIX C.  MATLAB: FINITE DIFFERENCE METHOD 

As we discussed earlier in Section 3.2.2., we decided to use a Matlab script in order to 

solve for the electromagnetic fields in our Josephson junction using the current from the AC 

Josephson effect.  In this section we described the setup of this problem, so here we will 

simply present the actual Matlab scripts written and some results. 

The following is the initial script used to numerically solve for the magnetic vector 

potential of a Josephson junction. 

warning off; 
clear all; 
%Modified 5/15/07 
%Calculate A for a Josephson Junction 
%initialize array 
Nx=200; 
A=zeros(Nx); 
%Spacing if used 
dx=.0000001; 
dt=.0000001; 
%frequency Hz 
f=10; 
%current density, since J(0)=5, J=5cos(wt) 
J=5; 
mu=.0000000001; 
 
Rmin=0; 
w = 1; 
count=1; 
while (count < 1000)&(max(A)<10000)  
 Rmin=0; 
 point=0; 
 if mod(count,10)==0 
 fprintf('%g \n',count) 
 end 
for j=2:(Nx-1) 
 for i=2:(Nx-1) 
 if (i<75 | i>125) 
 x(j,i)=5;     
 

if j==2 
 A(i,j-1)=0; 
 elseif j==Nx-1 
 A(i,j+1)=0; 
 end 
 R = A(i-1,j)+A(i+1,j)-A(i,j-1)-A(i,j+1)+mu*dx*dt*A(i,j); 
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Rmin = Rmin+abs(R); 
 point=point+1; 
 A(i,j) = A(i,j)+(w/4)*R; 
 elseif (i>74 & i<126) 
 x(j,i)=0; 
 if j==2 
 A(i,j-1)=0; 
 elseif j==Nx-1 
 A(i,j+1)=0; 
 end 
 R = A(i-1,j)+A(i+1,j)-A(i,j-1)-A(i,j+1)-mu*dx*dt*J*cos(f*j);; 
 Rmin = Rmin+abs(R); 
 point=point+1; 
 A(i,j) = A(i,j)+(w/4)*R; 
 

end 
 end 
end 
 
count=count+1; 
Rmin=Rmin/point; 
end 
save Junction.dat x -ascii -tabs 
save Josephson.dat A -ascii -tabs 
 
contourf(A) 
 

Earlier we saw the geometry of the problem was entered correctly and below we see the 

result for the magnetic vector potential obtained using this script.  In the figure below we see 

that we have a single, very large, negative region occurring inside one of the superconducting 

regions.  It is interesting that we do not see a symmetric result about the center of the z-

component of the junction, since the junction and its initial conditions are symmetric about 

this axis.  If we were to have calculated the electromagnetic fields from this vector potential, 

they would also be present and oscillatory in the same region as we see the magnetic vector 

potential.  This result is not intuitive nor in line with the results we obtained before.  

Therefore, we consider this an incorrect result.  The debugging of this solution and the 

extension of this solution to calculate the electromagnetic fields, will be the focus of future 

directions. 



www.manaraa.com

74 

 



www.manaraa.com

75 

 

BIBLIOGRAPHY 

Anderson, N. E., Mina, M., and Babaei Brojeny, A. A. (2006). On the Utilization of 

Magnetic Vector Potential for a Description of a Superconducting Transmission 

Line. IEEE Trans. Appl. Supercond. 16(3):1913-1917. 

Ashcroft, N. W. and Mermin, N. D. (1976). Solid State Physics. Australia: Thomas Learning, 

Inc. 

Balanis, C. A. (1989). Advanced Engineering Electromagnetics. New York: John Wiley & 

Sons. 

Barone, A. and Paternò, G. (1982). Physics and Applications of the Josephson Effect. New 

York: John Wiley & Sons. 

Clarke, J., Goubau, W., and Ketchen, M. (1975). A reliable DC squid made with tunnel 

junctions. IEEE Trans. Magn., 11(2):724-727. 

Dressel, M. and Grüner, G. (2002). Electrodynamics of Solids. Cambridge: Cambridge 

University Press. 

Faoro, L., Siewert, J., and Fazio, R. (2003). Non-Abelian Holonomies, Charge Pumping, and 

Quantum Computation with Josephson Junctions. Phys. Rev. Lett., 90(2):028301-1 – 

028301-4. 

Ginzburg, V.L. and Andryushin, E. A. (2004). Superconductivity. Singapore: World 

Scientific. 

Gorter, C. J. and Casimir, H. B. G. (1934). On Supraconductivity. Physica, 1:306-320. 

Jackson, J.D. (1999). Classical Electrodynamics. New York: John Wiley & Sons Inc. 



www.manaraa.com

76 

 

Josephson, B. D. (1962). Possible new effects in superconductive tunneling. Phys. Rev. Lett.,

1:251-253. 

Josephson, B. D. (1964). Coupled Superconductors. Rev. Mod. Phys., 36:216-220. 

Josephson, B. D. (1974). The Discovery of Tunneling Supercurrents. Science,

184(4136):527-530. 

Kittel, C. (1996). Introduction to Solid State Physics. New York: John Wiley & Sons, Inc. 

London, F. and London, H. (1935). The Electromagnetic Equations of the Supraconductor. 

Proc. Roy. Soc., 149:71-88. 

Parker, W. H., Taylor, B. N., and Langenberg, D. N. (1967). Measurement of 2e / h Using 

the ac Josephson Effect and its Implications for Quantum Electrodynamics. Phys. 

Rev. Lett., 18(8):287-291. 

Pippard, A. B. (1947). The surface impedance of superconductors and normal metals at high 

frequencies. I. Resistance of superconducting tin and mercury at 1200Mcyc./sec. 

Proc. Roy. Soc., A191:370-384. 

Pippard, A. B. (1947). The surface impedance of superconductors and normal metals at high 

frequencies. II. The anomalous skin effect in normal metals. Proc. Roy. Soc.,

A191:385-399. 

Pippard, A. B. (1947). The surface impedance of superconductors and normal metals at high 

frequencies. III. The relation between impedance and superconducting penetration 

depth. Proc. Roy. Soc., A191:399-415. 

Pond, J. M., Weaver, P., and Kaufman, I. (1989). Propagation Characteristics of Inductively-

Coupled Superconducting Microstrip. IEEE MTT-S Digest, 451-454. 

Sadiku, M. (2001). Numerical Techniques. New York, CRC Press, Inc. 



www.manaraa.com

77 

 

Shapiro, S. (1963). Josephson currents in superconducting tunneling:  The effect of 

microwaves and other observations. Phys. Rev. Lett., 11:80-82. 

Suzuki, K., Hayashi, K., Murphy, A., Fujimoto, M., Yoshikawa, S., Yamaguchi, K., and 

Enomoto, Y. (1994). Y-Ba-Cu-O Mixer Antenna Array at 23 GHz. IEEE MTT-S 

Digest, 1001–1004.   

Swihart, J. C. (1960). Field Solution for a Thin-Film Superconducting Strip Transmission 

Line. J. Appl. Phys., 32(3):461-469. 

Wu, P. H., Wang, H. B., Chen, J., and Yamashita, T. (2002). Propagation of an 

electromagnetic wave in a stack of superconducting layers. Supercond. Sci. Technol. 

15:364-369. 

 



www.manaraa.com

78 

 

ACKNOWLEDGEMENTS 

There have been many people over the years that have motivated, encourage, and 

inspired me in my education and in life.  They have helped me build a strong foundation and 

find joy in both work and life.  I would first like to thank my wife Cassie.  She has helped me 

through the sleepless nights and been there through all my successes and all my failures 

always encouraging me.  Without her, it is very likely that this paper would never have been 

written.  Of course I would like to thank my advisor Mani.  I remember my first class with 

Mani.  He had such a joy teaching and explained electromagnetism so beautifully that I had 

to learn more about the subject.  Throughout my career, Mani has always been such an 

inspiration and I am glad that he has believed in me all throughout this process.  I would also 

like to thank my committee members Robert Weber and Alex Travesset.  I appreciate the 

time they have taken and their accommodativeness.  I have fond memories of both of their 

courses and have used the things I have learned in both my research and at my job.  I would 

also like to take the opportunity to thank Paul Canfield, who I first began my research career 

with over 8 years ago.  It was because of Paul that I found a true enjoyment in the work that I 

did and decided to pursue graduate research.  Finally, I would like to thank my parents.  They 

have supported me in all my endeavors throughout my life and continue to do so to this very 

day.  I am truly thankful for everything they have done.  


	2007
	Description of a superconducting transmission line having a weak link Josephson junction architecture
	Norman E. Anderson
	Recommended Citation


	Microsoft Word - 87965-1184728066-Thesis_7_17_07

